তৃতীয় অধ্যায় পাঠ-৪ অক্টাল ও হেক্সাডেসিমেল থেকে বাইনারি এবং বাইনারি থেকে অক্টাল ও হেক্সাডেসিমেল সংখ্যায় রূপান্তর।
এই পাঠ শেষে যা যা শিখতে পারবে-
- ১। অক্টাল এবং হেক্সাডেসিমেল সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর করতে পারবে।
- ২। বাইনারি সংখ্যাকে অক্টাল এবং হেক্সাডেসিমেল সংখ্যায় রূপান্তর করতে পারবে।
অক্টাল সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর:
পূর্ণ সংখ্যা এবং ভগ্নাংশের ক্ষেত্রে একই নিয়ম–
- ১। অক্ট্যাল সংখ্যার প্রতিটি ডিজিটের তিন বিট বাইনারি মান লিখতে হবে। (প্রতিটি ডিজিটের বাইনারি মান ৩-বিটের কম হলে বাম পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৩-বিট পূর্ণ করতে হবে।)
- ২। অবশেষে প্রাপ্ত বাইনারি মান গুলিকে পাশাপাশি সাজিয়ে লিখলে অক্ট্যাল সংখ্যাটির সমতূল্য বাইনারি সংখ্যা পাওয়া যাবে।
উদাহরণঃ (375.24)8 সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর।
সুতরাং (375.24)8 = (011111101.010110)2
- ১। (127)8 কে বাইনারি সংখ্যা পদ্ধতিতে রূপান্তর কর।
- ২। (.7125)8 কে বাইনারি সংখ্যা পদ্ধতিতে রূপান্তর কর।
হেক্সাডেসিমেল সংখ্যাকে বাইনারি সংখ্যায় রূপান্তরঃ
পূর্ণ সংখ্যা এবং ভগ্নাংশের ক্ষেত্রে একই নিয়ম–
- ১। হেক্সাডেসিমেল সংখ্যার প্রতিটি ডিজিটের চার বিট বাইনারি মান লিখতে হবে। (প্রতিটি ডিজিটের বাইনারি মান ৪-বিটের কম হলে বাম পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৪-বিট পূর্ণ করতে হবে।)
- ২। অবশেষে প্রাপ্ত বাইনারি মান গুলিকে পাশাপাশি সাজিয়ে লিখলে হেক্সাডেসিমেল সংখ্যাটির সমতূল্য বাইনারি সংখ্যা পাওয়া যাবে।
উদাহরণঃ (35D.4F)16 সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর।
সুতরাং (35D.4F)16 = (001101011101.01001111)2
- ১। (D218)16 কে বাইনারি সংখ্যা পদ্ধতিতে রূপান্তর কর।
- ২। (.1C39)16 কে বাইনারি সংখ্যা পদ্ধতিতে রূপান্তর কর।
বাইনারি সংখ্যাকে অক্টাল সংখ্যায় রূপান্তরঃ
পূর্ণ সংখ্যার ক্ষেত্রে-
- ১। সংখ্যাটির LSB থেকে MSB অর্থাৎ ডান থেকে বাম দিকে ৩-বিট করে গ্রুপ করে নিতে হবে। (৩-বিটের কম হলে বাম পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৩-বিট পূর্ণ করতে হবে।)
- ২। অতপর প্রতিটি ৩-বিট গ্রুপের আলাদা ভাবে অক্টাল মান লিখতে হবে।
- ৩। অবশেষে প্রাপ্ত অক্টাল মান গুলিকে পাশাপাশি সাজিয়ে লিখলে বাইনারি সংখ্যাটির সমতূল্য অক্টাল সংখ্যা পাওয়া যাবে।
উদাহরণঃ (10101011)2 সংখ্যাকে অক্টাল সংখ্যায় রূপান্তর।
সুতরাং (10101011)2 =(253)8
ভগ্নাংশের ক্ষেত্রে-
- ১। সংখ্যাটির MSB থেকে LSB অর্থাৎ বাম থেকে ডান দিকে ৩-বিট করে গ্রুপ করে নিতে হবে। (৩-বিটের কম হলে ডান পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৩-বিট পূর্ণ করতে হবে।)
- ২। অতপর প্রতিটি ৩-বিট গ্রুপের আলাদা ভাবে অক্টাল মান লিখতে হবে।
- ৩। অবশেষে প্রাপ্ত অক্টাল মান গুলিকে পাশাপাশি সাজিয়ে লিখলে বাইনারি সংখ্যাটির সমতূল্য অক্টাল সংখ্যা পাওয়া যাবে।
উদাহরণঃ (.1011011)2 সংখ্যাকে অক্টাল সংখ্যায় রূপান্তর।
সুতরাং (.1011011)2 =(.514)8
- ১। (1101001)2 কে অক্টাল সংখ্যা পদ্ধতিতে রূপান্তর কর।
- ২। (.1010011)2 কে অক্টাল সংখ্যা পদ্ধতিতে রূপান্তর কর।
বাইনারি সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তরঃ
পূর্ণ সংখ্যার ক্ষেত্রে-
- ১। সংখ্যাটির LSB থেকে MSB অর্থাৎ ডান থেকে বাম দিকে ৪-বিট করে গ্রুপ করে নিতে হবে। (৪-বিটের কম হলে বাম পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৪-বিট পূর্ণ করতে হবে।)
- ২। অতপর প্রতিটি ৪-বিট গ্রুপের আলাদা ভাবে হেক্সাডেসিমেল মান লিখতে হবে।
- ৩। অবশেষে প্রাপ্ত হেক্সাডেসিমেল মান গুলিকে পাশাপাশি সাজিয়ে লিখলে বাইনারি সংখ্যাটির সমতূল্য হেক্সাডেসিমেল সংখ্যা পাওয়া যাবে।
উদাহরণঃ (0111001011)2 সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তর।
সুতরাং (0111001011)2 = (1CB)16
ভগ্নাংশের ক্ষেত্রে-
- ১। সংখ্যাটির MSB থেকে LSB অর্থাৎ বাম থেকে ডান দিকে ৪-বিট করে গ্রুপ করে নিতে হবে। (৪-বিটের কম হলে ডান পার্শ্বে প্রয়োজনীয় সংখ্যক শুন্য বসিয়ে ৪-বিট পূর্ণ করতে হবে।)
- ২। অতপর প্রতিটি ৪-বিট গ্রুপের আলাদা ভাবে হেক্সাডেসিমেল মান লিখতে হবে।
- ৩। অবশেষে প্রাপ্ত হেক্সাডেসিমেল মান গুলিকে পাশাপাশি সাজিয়ে লিখলে বাইনারি সংখ্যাটির সমতূল্য হেক্সাডেসিমেল সংখ্যা পাওয়া যাবে।
উদাহরণঃ (.1010011)2 সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তর।
সুতরাং (.1010011)2 = (.A6)16
- ১। (1101101)2 কে অক্টাল সংখ্যা পদ্ধতিতে রূপান্তর কর।
- ২। (.1010011)2 কে অক্টাল সংখ্যা পদ্ধতিতে রূপান্তর কর।
পাঠ মূল্যায়ন-
উদ্দীপকটি পড় এবং প্রশ্নের উত্তর দাওঃ
ICT বিষয়ের অধ্যাপক ক্লাশে সংখ্যা পদ্ধতি পড়াচ্ছিলেন। তখন ইমরানকে তার ICT বিষয়ের অর্ধ-বার্ষিক ও বার্ষিক পরীক্ষার প্রাপ্ত নম্বর জানতে চাইলে সে বলল, অর্ধ-বার্ষিকে (37)8 এবং বার্ষিক পরীক্ষায় (3F)16 নম্বর পেয়েছে। অন্যান্য ছাত্ররা এর অর্থ বুঝতে না পেরে স্যারকে জিজ্ঞেস করলে স্যার বিস্তারিত বুঝিয়ে বললেন।
- গ। ইমরানের অর্ধ-বার্ষিক এবং বার্ষিক পরীক্ষায় প্রাপ্ত নম্বর কে বাইনারি সংখ্যায় রুপান্তর কর।
উদ্দীপকটি পড় এবং প্রশ্নের উত্তর দাওঃ
নাবিলা বাজারে গিয়ে (754.25)8 টাকার বই, (E54.2C1)16 টাকার কাগজ, (100)2 টাকার কলম কিনল। নাবিলার বন্ধু শর্মি (100101.010)2 টাকা খাবার ও (10110.110)2 টাকা যাতায়াত বাবদ ব্যয় করল।
গ। নাবিলার কাগজ ও কলম বাবদ মোট কতো টাকা খরচ হয়েছে তা বাইনারিতে প্রকাশ কর।